L30 March 31 Htpy Equiv

Monday, March 23, 2015 5:29 PM

We saw that Rn is special that

[X, Rn] is a singleton & space X.

Let Y be such a space, i.e.

[X, Y] is a singleton \forall space X

 Ψ

[Y, Y] is a singleton

1

The maps id 2 c: T -> T where

id(y)=y and c(y)=yo \ yer

[X,Y] is a singleton \forall space XLet $f: X \longrightarrow Y$

Then $f = id \cdot f \sim c \cdot f = c$

Definition.

A space Y is contractible if the identity map id ~ constant map.

Example.

* R" is contractible

+ Any steu-shape XCP is contractible

From above

X is contractible \(\mathbb{E}\) [W,X] = \{[c]\} \ \W

Given a contractible space X, i.e., id: $X \longrightarrow X$ is homotopic to C onto $x_0 \in X$ Qu. What can you say about X and 1xol? * X = [xo], not homeomorphic * Somehow, they are very similar. Observe that $\{x_0\} \stackrel{L}{\Longleftrightarrow} X$, we have

> Roi=idsxol and ioC= C ≈ idx trivial by dof. X is contractible

Though i and a are not bijections, they play a very similar role as inverses.

Homotopy Equivalences.

Let X. T be spaces, and f: X->Y, g: Y->X satisfy g.f ~ idx and f.g ~ idy. We call fig homotopy equivalences (homotopy inverse to each) The space X,Y are homotopy equivalent or they are of the same homotopy type. Notation $X \simeq Y$.

f and g are called homotopy inverses to each other.

Fact. X homes Y -> X ~ Y

This is obvious because fof = id ~ id

(i)
$$X_1 \simeq X_2 \Rightarrow [X_1,Y] \xleftarrow{\text{bijection}} [X_2,Y]$$

$$(i) \quad Y_1 \simeq Y_2 \Rightarrow [X,Y_1] \longleftrightarrow [X,Y_2]$$

Key step It again comes from

$$X \xrightarrow{f_0} Y \xrightarrow{g_0} Z$$

 $f_0 \simeq f_1$ and $g_0 \simeq g_1 \Longrightarrow g_0 f_0 \simeq g_1 f_1$ etc.

$$[x, x] \xrightarrow{\#} [x, x]$$

$$[f] \xrightarrow{} [\phi \cdot f]$$

$$[x, x] \xrightarrow{\#} [x, x]$$

$$[x, x] \xrightarrow{\#} [x, x]$$

$$[\psi \cdot g] \leftarrow [g]$$

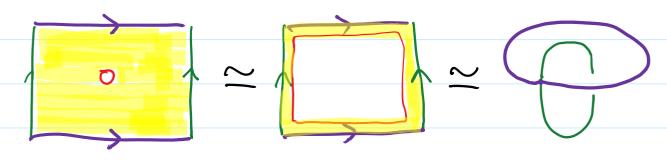
Morcover,

$$\psi_{\#} \circ \psi_{\#} = id$$
 because $\psi_0 \psi_0 f \simeq (id)_{Y_0} \circ f = f$
 $\psi_{\#} \circ \psi_{\#} = id$ because $\psi_0 \psi_0 g \simeq (id)_{Y_2} \circ g = g$

(i) For
$$X_1 \xrightarrow{\varphi} X_2$$
, it is similar, but the mapping reverses, $[X_1,Y] \xleftarrow{\varphi} [X_2,Y]$

Examples.

- (1) R^ ~ {0}
- (2) $S' \times R \simeq S'$ $(e^{i\theta}, t) \xrightarrow{f} e^{i\theta} \xrightarrow{g} (e^{i\theta}, 0) \xrightarrow{f} e^{i\theta}$ $fg = id_{S'}, gf \simeq id_{S'} \times R$
- (3) Punctured Torus ~ S'VS' = 00



Definition $A \subset X$ is called a retract if \exists continuous $r = X \longrightarrow A$ such that $r|_{A} = id_{A}$ In other words, $A \subset X \longrightarrow X$ satisfies $roi = id_{A}$. The other composition for has no additional fact.

If, in addition, for $\simeq id_X$, then A is a deformation retract. In this case, $A \simeq X$.

The above examples

 $\mathbb{R}^n \simeq \{0\}$, $\mathbb{S}' \times \mathbb{R} \simeq \mathbb{S}'$, $\mathbb{T}^2 \setminus \{1\} \simeq \mathbb{S}' \setminus \mathbb{S}'$ are deformation retracts 9:45 PM

Example

Let $X = S^2 \setminus \{P, g\}$ where $P_3, g_3 > 0$ and $A = \{(x_1, x_2, x_3) \in S^2 : x_3 \le 0\}$ Then $A \subset X$ is a retract by $r : X \longrightarrow A : (x_1, x_2, x_3)$ $\longmapsto (x_1, x_2, -x_3)$

Intuitively, one sees that X & A

History By definition, it is clear that

X homes Y -> X -> Y

additional condition?

Poincaré Conjecture If $X \simeq S^n$ then $X = S^n$

n=0,1,2 Relatively Easy

n=3 Original Question of Poinconé

n≥5 Stephen Smale, 1966 Fields Medal

n=4 Michael Freedman, 1982 Fields Medal

N=3 Grigori Petelman, 2003 announced

Base point

Recall that $[S^0, X]$ is in principle counting the number of path components of X. But it counts better for $(S^0, 1) \longrightarrow (X, x_0)$ i.e. $f: \{\pm 1\} \longrightarrow X$ with $f(1) = x_0$. The role of x_0 is a base point

Let X be a space with a base point $x_0 \in X$. A loop at x_0 is a continuous path $Y: [0,1] \longrightarrow X$ with $Y(0)=Y(1)=x_0$.

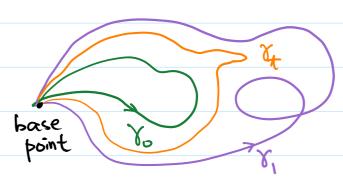
In other words, we are considering

$$\left([0,1], \{0,1\} \right) \xrightarrow{\gamma} \left(\times, \{x_0\} \right)$$

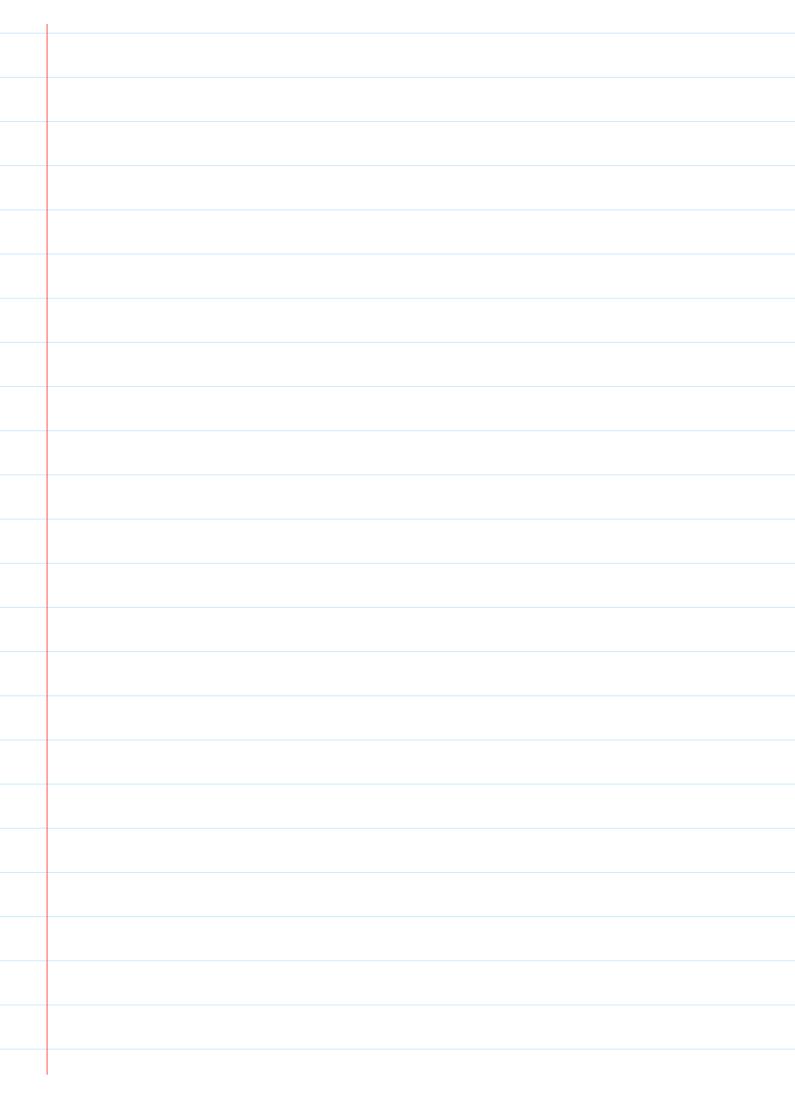
Another alternative is to study $(S', 1) \xrightarrow{Y} (X, x_o)$

In any formulation, the aim is to fixed the mappings (curves) at the base point Xo. This is also needed in the homotopy

Given two loops $Y_0, Y_1 : [0, 1] \longrightarrow X$, at X_0 , they are loop homotopic if there exists a loop homotopy $L : [0,1]_X [0,1] \longrightarrow X$ such that $C(S,0) = Y_0(S)$ $C(S,0) = Y_0(S)$ $C(S,1) = Y_1(S)$ $C(S,1) = Y_1(S)$ $C(S,1) = X_1(S)$ $C(S,1) = X_1($



For $f,g:(X,A) \rightarrow (Y,B)$ with $f|_A = g|_A$ A homotopy rel A is a continuous wapping $H: X \times [0,1] \rightarrow Y$ $H(x,o) = f(x), H(x,1) = g(x), x \in X$ $H(x,t) = f(x) = g(x), x \in A, t \in [0,1]$

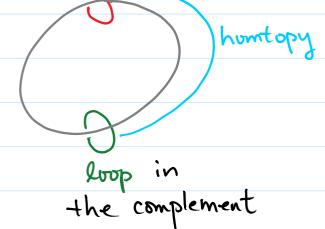


Example of importance of base point In topology, we often need to study complement of a knot

R3 \ circle

or

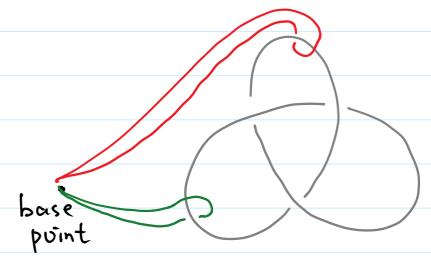
R3 \ Trefoil



homotopy

If the loops have no base point, both

R3 \ circle, R3 \ Trefoil has one homotopy class



These two loops with base point are not homotopic. Therefore

R3/circle + R3/Trefoil